skip to main content


Search for: All records

Creators/Authors contains: "Wen, Chengfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Surface registration plays a fundamental role in shape analysis and geometric processing. Generally, there are three criteria in evaluating a surface mapping result: diffeomorphism, small distortion, and feature alignment. To fulfill these requirements, this work proposes a novel model of the space of point landmark constrained diffeomorphisms. Based on Teichm¨uller theory, this mapping space is generated by the Beltrami coefficients, which are infinitesimally Teichm¨uller equivalent to 0. These Beltrami coefficients are the solutions to a linear equation group. By using this theoretic model, optimal registrations can be achieved by iterative optimization with linear constraints in the diffeomorphism space, such as harmonic maps and Teichm¨uller maps, which minimize different types of distortion. The theoretical model is rigorous and has practical value. Our experimental results demonstrate the efficiency and efficacy of the proposed method. 
    more » « less
  2. Skull registration plays a fundamental role in forensic science and is crucial for craniofacial reconstruction. The complicated topology, lack of anatomical features, and low quality reconstructed mesh make skull registration challenging. In this work, we propose an automatic skull registration method based on the discrete uniformization theory, which can handle complicated topologies and is robust to low quality meshes. We apply dynamic Yamabe flow to realize discrete uniformization, which modifies the mesh combinatorial structure during the flow and conformally maps the multiply connected skull surface onto a planar disk with circular holes. The 3D surfaces can be registered by matching their planar images using harmonic maps. This method is rigorous with theoretic guarantee, automatic without user intervention, and robust to low mesh quality. Our experimental results demonstrate the efficiency and efficacy of the method. 
    more » « less